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PART |

A. INTRODUCTION

Preceding "Parameter Optimization" reports have been primarily concerned
with methods of determining orbital parameters from various types of observational
data, relations between errors in the parameters so determined and errors in the
observational data, and to an extent, with the nature of the observational errors
themselves. We now turn our attention to the related, but essentially independent,
problem of describing the state of our information about the dynamical variables of
the orbiting body when the most probable values of the orbital parameters and the
uncertainties in these values have been determined using one of the methods previously
described.

Knowledge of the analytical dependence of the uncertainties in these variables
may be put to a variety of applications. It allows us to find out at what points in an
orbit a particular variable is known most accurately (or least accurately), and by
inference, at what point or points (and what type of) additional measurements would
be most advantageous. It also pemits us to establish quite arbitrary criteria for
discriminating between sets of parameters (For example, if two sets of orbit parameters
describing the same orbit are obtained by different techniques, we may decide which
set will allow the most accurate determination of position or velocity at a specific
point in the orbit, or for which set the maximum error in position or velocity will be
least). The results of such a study are virtually independent of the methods used in
determining the orbital parameters, and are thus a generally applicable extension of
all previous "Parameter Optimization" reports.

In order that results of such general validity might be obtained in a brief and
easily utilized form, and to facilitate computation, the following simplifying assump-
tions have been made:

(1) Only elliptical orbits of low eccentricity are considered,
and analysis is limited to variables in the plane of the

orbit,




(2) Errors in orbital elements are assumed to be purely statis-
tical in nature. The classical elements are, in fact, treated
as uncorrelated random variables, following an approxi-

mately Gaussian distribution.

(3) All perturbations on the classical equations of motion,
which produce secular variations in the parameters,
are neglected in determining the dynamical propagation

of these statistical errors.

(4) The duration of time for which the propagation of errors
is followed is less than, or of the order of, the period of
the motion. (This is in keeping with our omission of

secular variations in orbital parameters).

Our discussion is divided into three parts. [n Part A, we reiterate in concise
form a part of the work done in previous reports which is directly related to our
present purpose. In particular, we develop, in a form especially suitable for small
eccentricity, expressions for the variances of the classical orbital parameters
obtained from a single position-velocity measurement. In Part B, expressions are
derived, under the previously mentioned assumptions, for the propagation of the
variances in the dynamical variables as a function of the angular position of the
orbiting body, the classical parameters of the ellipse and the variances in these
parameters. The variations of errors from initial values are found to be functions
of the eccentricity only. Simplified forms of these expressions, in which the relative
values of the parameter variances are estimated from the results of Part A, are also
given. Part C is devoted to a summary of qualitative results, including illustration
in graphical form of the behavior of the error propagation functions for a few values
of ratios of parameter variances, and suggestions for further extension of this

approach,
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B. DEFINITION OF THE CLASSICAL ORBITAL PARAMETERS, AND THEIR
DETERMINATION FROM A SINGLE POSITION-VELOCITY MEASUREMENT.

The equations for a body moving in an elliptical orbit may be written in a
number of equivalent forms. In our present treatment, we shall adhere to the use
of a polar coordinate system, with the origin located at the focus approximately
coincident with the center of force. For the four parameters required to describe
the in-plane motion of such a body, we take the eccentricity "e," semi-latus
rectum "p," perihelion angle ep' and time of perifocal passage fp. The equations

of motion then leave the form:

= P
" Tte cos@ - ep) (1)

8
/3 . '
+/B £ @)

P K 0+e cos(e'-ep)] 2

where K =G M. The velocity components are consequently given by:

e sin(6-6 )6
P (p)

r =V = 2
" [1+e cos(e-ep)]

—

K
Vr -/E e sin(® ep) (3)

rB. = Ve =2 [1+e cos(e-ep)] 4)

SN

If measurements of r, 0, Vr, V9 are made at the same time (t = o),

and give results ror 80V Y the classical parameters may be determined
r

o o
as functions of these measured quantities from equations (1)~ (4). The results are
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P ©)
rV 2
=171 oeo 7
ep-eo-cos Le N K _]/f 7)
I'3V83 0 ]
° % - P do

(8)

]2

If the results of the measurements (Vo' 90, Vr r Vq ) are subject to uncorrelated
o o

random errors of known standard deviation (Gro, 090, OVr r Vg ) the variances of
o o

the parameters are given, to a good approximation, (if the standard deviations of the

measurements are sufficiently small) by, e.g.,

2 2 2 2
2 _ de” 2 de ™ 2 de g 2 de 2
=5 ot e Nt Y Ny >°Ve ()
o o r o 5] o)

with similar expressions for the other parameters. Before deriving expressions for the
necessary partial derivatives, it is convenient to introduce the assumption of small eccentricity

in Equation (8), which then becomes, to order e2;

i 2
e B -0 ) (1436 +0esin @ -8 )-8 -5y

fp K2 :_( 0 o) (1 7€ )t 2esin (90 ep) 7 sin 2 (90 ep), . (10)
* Note: 0e2, Or°2, 0902, etc. are to be read (Oe)2, (Oro)z, (090)2, etc. throughout

this report .
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The sixteen partial derivatives may then be written as functions of e and G -6),
o p

a form particularly suitable for the small e approximation, as (putting 90 -9 =0L°)

1 r 7
— T—'et o !
Br I'o Le cos 0.

2 0
et2cos tecos O ';
| o o

- ] . - ~
)sina 2+ecosa

L e O.1 Q-4
8 0

(1)

(12)



(13)

3t ]/'3—_ ] )
—P—%r—— EK ‘.-30Lo+— sinOLo‘

L e i

(14)

3 . -
% =2esin30L|

[ [o ]

Y LB .
A e L H cos O - sin Q& |
Y NVe 3OL°+smao SO T & o

[

o (o]

(All of the above expressions, with the exception of those for partials of t ,

are, to this point, exact, and involve no approximation.)
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Utilization of Equations (11) - (14) in Equation (9), and in similar expressions

. . _— 2
for the other parameter variances, gives (omitting terms of order e“)

ar 2 °V,2
- - (o] - -
032%; COS20L +2ecos - + ‘ez sin4OL 2 +
L o o 2 L o.l 2
r A\
0 r
o
oV 2
- 2 2_ eo
+ 4cos" 0 +t4ecost *4ecos O | (15)
L (o] [e] o 2
Ve
o
2
2 1 2 7% 2
o6 wl—— 19 4 0
p [ 2 %" ao_J co
e r
o
CJVe2
+,-i sin2(x +isin2(1 cosa + sinzOL coszOLj > (16)
_ 2 o e o o o o 2
e Ve
o
2 ov 2
2 - 2 Uro T, 27 eo
op" ~ 4p° —— + 471 (17)
L 2 L p-i 2
r Ve
o
o
2 oo gr o 12~~°r02
o R - B SUL I =
O‘fp N(K) (L "o sina f—s sinTa 4 < (18)
e o
2
of
12a i} Ve
- o . 4 2 ‘ o
+ - sind t— sin QO ; }
_ e o e2 o. Ve
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The parameter variances may thus, in principle, be determined, to the approximation
considered, from Equations (15) = (18). However, detailed knowledge of the relative
magnitudes of the percentage standard deviations of the measured quantities, and their
functional variations with o is required. The immediate utility of these equations is

2

o}
that it becomes apparent that, for this type measurement, 0e2 and _Ef- will be of

P 1 2
about the same order of magnitude, while (for small e) Oepz, Gfp2 will be about (g )
larger than the former quantities. In our subsequent development, this result is assumed

to be generally valid, even when other sets of measurements may be used in determining

the obital parameters.



C. DEVELOPMENT OF EXPRESSIONS FOR PROPAGATION OF VARIANCES
OF DYNAMICAL COORDINATES

We have shown in part A how the classical ombital parameters (e, p, ep' fp)
may be determined from a particular set of measurements, and have indicated also how
the accuracy of these parameters may be determined if the accuracy of the original
measurements is known. We shall now consider the complimentary question: given the
most probable orbital parameters, and associated standard deviations for each at time
t =0, what standard deviations should be associated with the dynamical variables at a
later time? If the probability density functions for the omital parameters themselves

is approximately Gaussian, we will have, in analogy with (9),

2 52 2 52 2 5 2 2 5 2 2
o =(5g) T (55) P (5m) BT (5) o (19)
P P

(It is perhaps worth emphasizing that the Oro of part A differs from the Or of

Equation (19) in that the former refers to the probability distribution for errors associated
with measurement of the independent variable o while the latter relates to deviations
in the calculated value of r at a specific time t to the true value of the radial position

of the satellite at this same time.)

. 2 2 2
Again, =quations similar to Eq. (19) will hold for o687, GVr , CIVe . If the

equations of motion are written in the form of Eqs. (1) and (2), however, care must be
exercised in obtaining the partial derivatives appropriate for the assumption of "t

as the independent variable. (One obvious alternative not considered in detail is to choose
8 as the independent variable, in which case Ot, the variance in tne precicted time

of arrival of the satellite at a given angle 6, would be calculated rather than 99).

3 . .
The correct expression for the 5& appearing in Eq. (19), for example, is

cer2] (318
= {2] 131 QD).

(20)
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Similarly,
dr _[ or ° ~ or o8
51wl %] [%]
P p o S P

18),13),

or _
5 =0 (21)
p
Generally speaking, the expressions obtained from differentiation of Eqs. (1) — (4)
are quite complicated; however, and it is convenient to introduce the requirement of
small eccentricity to simpify Eqs. (1) and (2) before the partial derivatives are taken.
The results are (to order e2)
r%p[]-ecosa + % cosza] (22)
3 2 2
/ P 3e . 3e” .
~ . r— + == - 4+ -
t fp+ % |:OL(1 5 ) =2 esina T snnZGJ (23)

(where a=6-98).
)



The sixteen partial derivatives required are then

or

de

or

op

2 .
~ =p| cosQ ~ 2e + 3e OLSInOL]

~ |l -ecosl - sinQ

. - 2
~ 2sint -3 edtesinCcos@ ~b6e QA cos

Az -<2—1>[&+2eacos@-2esin@]

— .2
= "/ —:3[ l+e cos&_‘;

11

(24)

(25)
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a—e—rw/%[sina+2esinacosa—3e OLcosG]
oV
r 1 /K . 2
Sl—a—fv--z— —3[esmOL+3eOLcosOL+6e Q cos OL]
(26)

.a_v_r =-<%> e cosa[ 1 +ec050«]

ave /E—[ cos Q -2esin2<1+3e 20L sina]

de
oV
a—;e-z -%/B—;[l+ecosa-3easin&-6e Gsin&cos&]
oV 2
8 - K . ”
—_— = = 1+ a
3 £2>esmal‘ e cos ]
P P
8V6=
3B

p

(27)
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(Terms in e2 have been omitted from the above expressions, except when e2
occurs as a multiplier of a term linear in Q; this is consistent with the fact that, by
carrying terms through order e2 in our expression for t, :—; , and hence all partials
with respect to e , will be good to order e only.)

The variances computed from Egs. (24) — (27), and from Eq. (9) and its counterparts
/B_

for the other variables are (putting e g ot =0T )

2

2
-;—20r2~ [:(1 -%Easina> ~2ecosa+3 e2 sindcosQ] (U—pE ) +

+[ cosza‘*’éez& sind cos® -4 e cosG] 062
+ s;n%]mz (28)

2

2
2 r9a 2 o] A P S N R
09 Nl:——-4 +9et cosa:i(p/ [—4sm a ]2eGS|nGJ Ce +

2
1 4 2 1 d ™
+[ e—2-+; cost + 6 cos a:lc'rz +-e-2- &Wep /) ’ (29)
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2 1

<%> O\/2=r[:'3_;“3L inQ cosa +—-a ] “0p. \

. . 2 2 .
+Esm2a+4esm Qcos@~-6e O cosQ sma:, Oe +

+Ecosza+4ecos3a:l GTZ, (30)

2

22 . Ve
1+2ecosa- 6eOLsmOL-18e20Lsin<1cosOL +9e @ sma]'\—pg> +

VR
Alo
\,/

M
r‘—*'1

2 2 . . 2
+!—cos at+be Asin® cost=-4e sin Gcosa:’ce +

(%

+|:sin20L +4ecosasin20t]c”2 . @31)
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D. RESULTS AND COMMENTS

In Figures 1= 4 and la—4a, Eqs. (28)~(31) are plotted for eccentricities
e =0.10, 0.05, and 0.01, and for two different assumptions as to the relative magnitudes

of the standard deviations in the orbital parameters. In obtaining Figures 14, we assume

g
-EE=Ge = eOep =0ox, while for Figures la ~4a, we again take Oe =0T= edep =0x ,

bufcg = 20x. These assumptions are suggested by Eqé. (15)~—(18), and should be
reasonably valid for illustrating some of the aspects of the behaviour of these functions.

A general feature of all the curves (except the O‘r2 curve in Fig. 2) is a pronounced
minimum somewhere in the second quadrant. The location of this minimum is plotted as a
function of e for 092 in Figures 5 and 5a.

For small eccentricity, 08 is clearly an order magnitude greater than Sid
The magnitudes of the fluctuations in the variances for all the variables, and, for 09,
the magnitude of the variance at the peribelion as well, is strongly dependent on e.

This fact suggests that an extension of this investigation to orbits of higher eccentricity
might mean even more significant variations. The simplifications introduced for small e
would, of course, then be invalid; however, the eccentric anomaly "E" as an independent
parameter and expressing the equations of motion in the form r =r(E), 8 =8(E),t+ =+(E)
leads to a vigorously valid expression for t(E)in closed form. Through this approach,
analysis valid for larger e and for longer periods of observation, but otherwise similar

to that carried out here, might be possible.

Other possibilities for further investigation include extension of the analysis to
three dimensions, and more sophisticated treatment of the parameter errors. (Utilizing
other parameters, allowing non-gaussian distributions or correlations for the parameters, etc.)
The former problem should be relatively straightforward, while the latter would necessarily

involve more detailed knowledge of typical parameter uncertainties.
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PART |l

A. INTRODUCTION

The object of this part of the study is to provide background information
and procedures in the area of orbit determination from the data obtained by a
radio tracking system to aid in defining the orbital parameters. The accuracy
with which range and range-rate can be determined using specific station
tracking systems has been studied in general. The following discussion is the
methods and procedures for utilizing range and range-rate data from specific

radio tracking systems to determine the desired orbital parameters.

The first approach of this study was the orbital parameters determination
procedure by range measurement only. A systematic method of orbit determination
which can correct the measurement error has been developed. Next we considered
the orbital determination procedures using the data of range-rate measurement. |t
was found that for a minimum of three stations the orbital parameters cannot be
determined by range-rate measurement alone.

The effectiveness of range-rate measurement for the orbit determination
was found to be dependent upon the accuracy of range measurement. Finally, a
general method of orbit determination is proposed by merely using four range -rate

doppler tracking stations.

B. PROCEDURES OF ORBITAL PARAMETERS DETERMINATION BY RANGE
MEASUREMENTS ONLY.,

The range measurements re between a radio tracking station and a spaceship
can be expressed in terms of a specific azimuth angle A and elevation angle E.

The azimuth angle is the angle of the projection of r, on the horizon plane of
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the tracking station measured with respect to the direction of south. The elevation
angle is the angle between vector T and the horizon plane of the tracking station.

As shown in Figure 1, let us set up a rectangular coordinate system with the
origin situated at the center of the tracking station, the x =Y plane coincides
with the plane of the horizon and the X " axis points south. The relationship

between SRS and ros E, A is:

x =1 cos E cos A
s s
Y= cos E sin A (1)

z =r sinkE
s

1
i}
X
N
+
~
N
+
N
“©oN

Y
A = fan ] TS— (2)
s
z
E= fon—] S
/2+ 2
Xs T Y

For a given measurement of range r with elevation angle E and azimuth
angle A, we can find the corresponding Xor ¥ and z.

We now proceed to transform the rectangular station coordinate (xs, Y Zs)
into a geocentric coordinate system, (xg, yg, zg). As shown in Figure 2, let the
origin of the station coordinate system be a distance r from the geocenter.

Furthermore, let the zg—qxis of the geocentric coordinate system coincide with the




axis of rotation of the earth. The X3 Yg plane of the geocentric system

coincides with the equatorial plane.

he transformation betwee z and z is
The transtormatio n X Yo Zg Xg'\ yg,

where M, =

is the translation matrix.

cos (%— B8) 0

M, = 0 1

| - sin (%-B) 0

is the rotation matrix by keeping Y unchanged and rotating the X, = 2 plane

(% - B) radians.

M3
1 0 0
0 1 0
zZ +r
0 0
z
sin(%—-B)_1
0
cos (- 8) |

e

9

sing 0
0 i
-cosB O

cos p

sin B

28

(4)



COs A

sin A

0

-sin A 0
cos A 0
0 ]
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(6)

is the rotation matrix by keeping the z-axis stationary and rotating the x-y plane \ radians.

So we have:

xg C”
yg - C21
zg C3]
where
CH
C21
Cay
cos h sin B -sin A
= sin A sin B cos A
- cos B 0

12

22

32

12

22

32

- y
C13 %s
C23 Ys |
C z
3
3] L=
Ci3
Coz |7 My MyMg
Ca3
z +r ]
cos A cosB(SZ °)
s
zs+r
sin A cos B ( ~ 2)

zs+r
. o
sin B (

S

)
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Therefore,

X = (cos X sin P X, = (sin )\) Y, + (cos \ cos B) (zs + ro)
yg =(sin A sinB) X, + (cos ) Y, + (sin X cos B) (zs + ro) (9)
zg = ~(cos B) x + (sin B) (Zs + ro) .

In terms of the measured station parameters (range ros elevation angle E

and azimuth angle A), the xg, yg, Zg coordinates for the geocentric system are:

xg =, cos E cos A cos \ sin B= r, cos E sin A sin A + (cos A cos B) (rs sin E + ro) (10)
yg': r, cos E cos A sin )\ sin B+ r, cos E sin A cos A + (sin \ cos B) (rs sin E + ro) (11)

zg: - cosE cos A cosB+ sinB (rssinE+ ro) ) (12)

Now, consider the earth which is rotating with a constant angular velocity .
As shown in Figure 3, take w in the same direction as the + z -axis. The
relationship between the geocentric system (xg, Ygr zg) and the inertial geocentric

system (xi, Yir zi) is:

x, cos wt -sinwt 0 xg
Y =1 sinwt cos wt 0 yg (13)
z, 0 0 1 z

i g

So we have:
X, =x_ coswt -y sinwt
g g
= r, cos wt [cos E cos A cos \ sin B— cos E sin A sin )
+ cos hcosBsinE] - r sinwt [cos E cos A sin X sin B (14)
+ cosE sinA cosA + sin X cos B sinE]

+ o [cos A cos B coswt -sin\ cos B sinwt ]




=% sinwt+ cos wt
y' g Yg

=rssinwt [cosE cosA cosA sinB - cosE sin A sin)

+

+

cos A cosPB sinE] + r, cos wt [cos E cos A sin ) sin B
cos E sin A cos A+ sin A cosB sin El
A [cos A cosB sinwt+sin) cosB coswt ]

z
g

—rocosE cos A cos B +rssinB sin E+r°sinB

x. can be simplified as:

X, =1 cos E cos A sinB [cos ut cos A-sinwt sin A ]
- T cos E sinA [coswtsin\ +sinwt cos A ]
+rs cos BsinE [coswt cos A -sinwt sin A\ ]

g cos B [coswt cos A - sinwt sin ]

(rs cos E cos A sinB + r, €os BsinE + r, cos B)

cos (wt +)\)—rscosE sin A sin (Wt +1) .

Likewise, y; can be simplified as:

y, =1 cos E cos A sin [sinwt cos A + coswt sin )]

-+

re cosE sinA lcoswt cos A -sinwt sin ]

-+

re cos B sin E [sinwt cos A + cos wt sin \ |

+

r cos B [sinwt cos A + coswt sin )]
=(rs cos E cos A sinB+ rssinE cosB+ro cos B)

sin (Wt +A) + e cos E sin A cos (wt+ )\)
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(15)

(16)

(17)

(18)
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Therefore, the coordinates of the inertial geocentric system are:

x.=(rS cos E cos A sin|3+rs cos B sinE+r° cos B)

' (19)
cos (uut+}\)—rs cos E sin A sin (wt+ 1)
y.=(r cosE cos A sinB+r sinE cosB+r cosB)
i s s o
(20)
sin (Wt + >\)+rS cos E sin A cos (wt+ 1)
z.=r sinBsinE--ro cos E cos A cosB+rosinB. (21)

Now, let us find the intersecting angle £ of the orbital plane
and the inertial equatorial plane.
From each set of data (rs, E, A) and information concerning the position
(A, B) of the tracking station, we can determine the corresponding position (xi,
Yir Zi) of the space ship with respect to a certain time reference (t) of the geocentric
inertial system.

Suppose the orbital plane ot the inertial geocentric system is:
axi+byi+czi=d. (22)

With three sets of measured data, we can determine the corresponding three
positions (xii' yii' zii' =1, 2, 3) of the space ship. So we have:

ax,

i

tby, *tcz, =d 23)

1 1

a X +b 2 tc Z.9 =d (24)

ax.,t byi3+ czi3=d. (25)
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Solving Eqs. (24), (25), and (26), we can find the coefficients a, b, and c expressed

in terms of d. We have:

‘ Yi1 Z
! Yi2 %2
] Yi3 23 (26)
a= d
| M|
X4 ! Z
x|2 ! Z|2
X:q 1 Ziq (27)
b= d
| M
1 i !
%2 7i2 ]
%3 Yi3 ] (28)
c= d ’

e



X A ol
where l M I - 2 Yi2 “i2
%3 Yi3 %3

The orbital plane expressed in terms of the inertial geocentric data is:

ioZi3 = %3 ~ Yin%s TV G2 T

+ - -
1 Zi3 X %2 T %2%3 T %3%2 T A

+ (x, - - + -
&y Yip = X Y3 T Y %2 T Ns T2 Y3 T Xis Vi)

= - + -

X1 Y2%3 T %51Yi3%2 C %23 E T %2 Y BB
+ -

X371 %2 T %i3Yiz Fn

Express the equation of the orbital plane as:

ax, tby tcz =d ,
oi o’i o i )

where

9= 02 237 212 Y43 "Y1 F3 T Y B2 T F Vs T E Vi)

b TX A3 TN T2 T N253 T N3 %2 H %2 T E N3

2 Vi3 T % Vi) X

B e PR TRt U
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(29)

(30)

(31)

(32)

(33)
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= - - + + - . . 34
o= Yi2 T X1 Vi3 T Y M2 T Vi M3t 2 Yis T X Va2 (34)
4o %1 Y2 %3 7% i3 B2 T M2 Y T T M2 Y T3
- 35
XY T2 T N8 Yi2 % 5)
The normal of the orbital plane can be expressed as:
T g b+ .
n=ax boyi €z (36)
where /x\i, /y\l and /z\‘ represent the unit vectors in the directions of the inertial
Cartesian coordinates.
To normalize n we have:
co/x\i ¥ bo/)>i ¥ cofz\i
" o= . (37)
(@ ?+b T;c 2) 1/2
) o o
We know that the unit normal vector of the equatorial plane can be expressed as:
AN
n,o=72 . (38)
As shown in Figure 4, the angle of intersection between the orbital plane and the
equatorial plane (€) can be found from the following relation:
‘o
A - - .
@ +b "+ c9)
0 o )
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Therefore,

-1 co
€= cos . (40)
2,172

(a +b2+c
o o o

From Equations (19), (20), and (21), we can determine the position
(xi, Y;r Zi) of the spaceship with the data (rs, E, A) furnished by a known
station (A, B). Using the same equations and a common time reference, we
can determine three positions (xii' yii' Zii' i=1, 2, 3) of the spaceship
at different times with the same or different known tracking stations. From
the three sets of data (xi,, Yiir Zoor i=1, 2, 3), we can find the parameters
ars bo’ <, of the orbital plane by Equations (32), (33) and (34). Then, the
intersecting angle £ between the orbital plane and the equatorial plane can
be determined by Equation (40). The direction L of the intersecting line of

the two planes is:

_ c'o yi "0 i (41)
(02+ |:>2 + cé)]/2
o o

The angle 1 between the intersecting line 1 and the xi-axis (See
Figure 4.) is:
R
n= tan (-Q—) . (42)

o



Now, we are ready to transform the data of the inertial geocentric
system (xi, Yir Zi) into the orbital plane system (xo, Yo Zo)' First, keep
the zi-cxis fixed, then, turn the XY plane T radians to coincide the X,
axis with the intersecting line of the horizontal plane and the orbital plane.

Let the coordinates of the orbital plane be x 1Y and z . Then, the trans-

formed coordinates are:

X cos 1 sin M 0 x.
y'o = | =sihm cos M 0 2
z, 0 0 1 z,

i L7

Next, fix the X" axis and rotate the y'o -z plane through an angle £.

Then, the orbital coordinates become:

X 1 0 0 X
o . o
- . = .
Yo | = 0 cost sin £ Yo
z 0 -sin€ cosE z,

Substituting Equation (43) into Equation (44), we get:

X cos M sin M 0 x.
o

y |=]=cos Esinn cos € cos sin € Y.
o i

z sin € sin M -sinf cos M cos £ z,
o

Therefore, the orbital coordinates are:

xoi = (cos M) xii + (sin ) yii
yoi = - (cos € sin ) xii + (cos € cos 1) yii + (sin E) zii

z .= (sin€ sinmn)x,, - (sin€ cosn)y..+ (cos§)z,. ,
oj i i i
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(43)

(44)

(45)

(46)
(47)

(48)




38

where j=1,2,3, and

xii = [rS cos E cos A sin B + r, cos B sin E+ r, cos B] cos (wti+ )

-, cos E sin A sin (uufi + ) (49)
yii = [rs cos E cos AsinB + re sin E cos B+ r, cos B sin (uuti +A)

+ 1, cos E sin A cos (wtj+ \) (50)
zii=rs sin Bsin E - cos E cos A cos B + X sinB . (2))

The transformed in should be very small (if not zero) compared to
the values of in and y0i. This fact suggests a method of checking the
correctness of the measured data. In fact, if we are certain that only one of
the parameters of the measured data of a specific station is in error, we can
find the correct answer by minimizing z. Ano.lytically minimizing z with
respect to a certain parameter of a specific station may be difficult. But by
using the modern high speed digital computer, it is easy to find the correct
answer, Because, once one chooses the correct direction of changing the value
of the specific parameter, the value of z will approach zero monotonically
(to a certain degree of accuracy of course). The correct direction is not
difficult to find. The degree of accuracy, of course, will be dependent upon
the accuracy of the measured data and the station position accuracy. {f we
use the same three stations all the time for checking the orbit of a space
vehicle, the station errors may be neglected. The timing error and the pertur-
bations due to air drag and oblateness of earth, efc. have not been considered.

Now, we can proceed fo use the orbital data (xoi, yoi) to determine
the orbital parameters of the space vehicle. in the orbital plane (xg - yq

plane), the equation of the orbit in polar coordinates is (See Figure 5):




r= 5 (52)

There are only three unknowns in Equation (52). Thus, the same
three points used to determine the orbital plane can be used to determine
the three unknowns e, p and 8-

The perigee of the observed space vehicle is at:

8 =28 53
o= % (53)
r = P . (54)
P 1+e

The coordinates of apogee are:

8, =(m+ 60) (55)

S (56)

“ 1 -e

For three sets of data (XO]’ YOI)' (x02, YOZ) and (x03, y03), we have:

= bt Ygi)]/z 67)
Y-

6, = ton-] (_91), (58)

' *0i

where i=1, 2, 3.




Knowing (r], 9]), (r2, 92) and (r3, 93), the angle 60 can be

found by the following procedures:
Let,

r, = P ,i=],2,3.
l+e cos(ei —90)

Eliminating p we get the following two expressions:

]

r][l+ecos(9]-6 ]

fo [1+ecos(d, -8

O) 2 0)

r][]+ecos(e]-8 ] r3[l+ecos(63—e ]

N 0

By rearranging the above two equations, we get,

cos (8, -6,)]

r]-r2=e[r2cos(92-60)-r | O)

1
rp-rz=e [r3 cos (63-60) -1y cos (9] -90)].

By eliminating e we get,

2 [ r, cos (92 - 90) - 1, cos (9l - 60)]

T [ ry cOs (63 - 90) -1, cos (6] - 60)]

(r2 cos 92 - r, cos 9]) cos 80 + (r2 sin 62 - sin 6]) sin ©

40

(59)

(60)

(61)

(62)

(63)

0

(r3 cos 93 -1, cos 8]) cos 90+ (r3 sin 63 - sin 9]) sin 0

By simplification:

[r] (r3 cos 93 - 1,y cos 62)+ r (- F3 €OS 63+ Fy cos 6])+ F3 (r2 cos 62 - 1y cos 8])]

- (64)
0

. (65)

. (r2 sin 82 - rg sin 93) +Tg (r] sin 8, = ry sin 92) + 1y (r3 sin 85 - ry sin 9])]
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Therefore,

. tan_] M (r3 cos 83 = 1y COS 62) + 1, (r] cos 6] - rq COS 93) + 15 (r2 cos 62 -1y cos 9]) . (66)

0 N (r2 sin 62 - r3sin 63) + 1y (r3 sin 8, - 2 sin 9]) +ra (r] sin 9] - 1, sin 62)

Once 60 is found, the eccentricity can be found from the following equations:

r, =-r
¢ = 2 67)

[r2 cos (82 - Go) - cos (9] - 60)]

or
ro-r
e = ] 3 * (68)
[ ry cOS (93 - 80) - 1, cos (6] - 90)']

Finally the semi-latus rectum p of the orbit is:
p=r. [1+ecos (9i -60)] (69)

where i=1, 2, 3.

By measuring any three points of the orbit of the space vehicle, we can

from Equations (69), (68) and (66).

determine parameters p, e, and ©

0
The orbit is thus determined in the orbital plane. At the same time, the
orientation of the orbital plane is also determined.

The perigee of the observed vehicle is:

r. [1+ e cos (9.-80)]
ro= - ! ,i=1,2, 3. | (70)
P l1+e

The apogee is:

r. [1+ecos (9i —60)]
r.= Ii=]I2l3' (7])

1-e

The parameters e and 60 can be found from previous equations.
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C. ORBITAL PARAMETERS DETERMINATION BY RANGE AND RANGE
RATE MEASUREMENTS,

Range rate measurements can give us the information concerning the speed
of the space vehicle. With the knowledge of the correct speed of the space vehicle,
the orbital parameters can then be determined. In order to obtain the correct infor-
mation concerning the speed of the space vehicle, we have to know the relative
position of the tracking station with respect to the orbital plane. As described in
the previous chapter, the orbital plane can be determined from the range data
obtained by the tracking stations. 1In other words, for a minimum of three tracking
stations, the range rate information is useful only when the range information is
available at the same time.

Suppose the coordinates of stations are (A, 8 , "o):
I

where i=1,2,3

r = radius of earth

o

\. = geocentric station longitude
I

B. = geocentric station latitude .

l

From Equation (9) of the previous chapter, the geocentric coordinates of the

tracking stations are:

X ).=F cos A, cos B.
(g)l o

). =r sin A, cos B,
(y o | i

g'i
(zg)i =r_sin Bi : (1)
Since
()] [eoswt  -sinur - O[T,
_ (yi)i sinw f cos wt 0 (yg)i p
). 0 0 ey, 2)




43

where = constant angular velocity of the earth, then the coordinates of the

tracking stations in inertial geocentric frame are:

(xi). =r_ cos )\i cos Bi cos wt - r_ sin Aj cos Bi sin wt (3)

).=r cos \, cos B, sinwt+r_ sin A, cos B, cos wt 4
(Y' ] o i I o | | )
(zi i =r_ sin Bi . (5)

We know that the vehicle is at position (Xii' yii' zii). The line joining
the station [(Xi)i' (Yi)i' (zi)i] and the vehicle (xii' yii’ zii) ise

ST SRAT St
xii - (xi)i B yii - (yi)i N Zii = (Zi

T ©

Suppose the tangent line of the orbit at the point (xii' yii' Zii) is:

X, = X,, . .o . -
T 1 | 7)

m n |

The condition that the line of Equation (7) is perpendicular to the radius

vector extending from the origin to the space vehicle (xii' yii, Zii) is:

mxii+nyii+lzii=0, (8)

since the line of Equation (7) is also in the orbital plane,

a_x.+b y,+c z.=d (9)



where
o TYi2%3 TR i3 T Y F2 T H3 it E Yis T F Y2

by = %1 %3 7 %51 Zi*t X3 Zp " Xip B3t F N2 T F K3

ST Y2 T Y3 T Y X3 T Y N2t N2 Y13 T N3 iz

d =X Yi2 H3 X0 YizYizt %2 Yi3 I T %2 Y Fs

T3 52 T3 Y2 He

From Equation (7), we can express Yir 2, in terms of X, and other

parameters as follows:

Substituting Equations (14) and (15) into Equation (9), we get:

bon c |
aj x; + (xi - Xii) + bo yii +

m (xi - xii) % Zii - do

The points (xii' yii' Zii) are on the orbital plane. Therefore,

a x..+b y.+c z.=d
o if ofij o ij o

i.e., aoxii=do-boyii—cozii .
Then, Equation (16) can be written as:

b n c |
(xi -xii)+

9B 5T @i'ﬁﬂ

=d -b y.-c¢c z.=a x..
o o i o I o Ij
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(10)

(n)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)



Equation (19) can be rearranged as:

bon col
(co+ - + - )(xi-xii)=0-

The term (xi - xii) cannot always be zero, Therefore, we have:

bon c |
a + — 4+ 2= 0.
o
m m
That is:
=0.

a m+b n+c |
(o} (] [o]

Multiply Equations (8) and {22) by a and xii , respectively, then take
the difference. We get: |

a ny,.+a lz.=-b nx, -c Ix, . =0.
o ij o i o Tij o ij
ThUSI (C “_aoz )l
ne O i
C1oy|i_box||
I aozii- o "ij
mzx—:[(q Y.. - b X )yii-qu
i o’if o ’ij

The direction components of the line of Equation (6) are:
ERL NN P [xii - (xi)i]: [yii - (yi)i]:[zii - (zi)i].

From Equations (24) and (25), we know that the direction components

of the line of Equation (7) are:

45

(20)

(1)

(22)

(23)

(24)

(25)

(26)
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% Z|| "% x|| ij z||
mnl:[(oy—Bx )x..-x]
1 o 1Ij 1 1]
cox -aoz,
(111, (27)
i TP N

Therefore, the cosine of the angle between lines of Equations (6) and (7) is:

m]m+n]n+lll

.= ’ 2
coskI P 2]/2 7 2 2 1/2 (28)
my+ni+ ) (m™+n"+17)
That is,
5" % Ny Y G
cos k= [{ [ x,. -(x)ll(o - ;f) ";iL ;-:]

+ - ) stz RN}
Oyli i
{[x -(xi)ilz
2 21/2 a z,-¢c x,. y.. z, 2
+ [Y '(Y)]+[z -(z)]} {[(aoyi!_boxif);ﬁl-_x_fl..]
o’ij ToTij Tij i
c X,.=d_ Z. 9 1/2
+ [ )Tl bo II] +|2} ]. 29)
o "ij

After calculating cos ki the speed vI of the space vehicle at (x, i Y. i ii)
can be obtained from the range rate measurement t.. The relation is simply:

v,= —L—, (30)




&
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where ?I is the range rate measurement at the jth tracking station. Knowing
the total velocity vI at point rI (. i Y. it ii)' we can find the total energy
of the spaceship as the sum of kinetic energy T and gravitational potential

energy U. i.e

ETot =T +U
_]M 2_GMeMS (3])
= 5 M, vi —T_'
where Ms = Mass of the spaceship

Me = Mass of the earth

G = Universal gravitational constant .

We know the total energy can be expressed as:

62 M2 M2
o=~ o), (32)
where
T=M T xv.. (33)

For a nearly circular orbit

L=M r, v.. 34
sIVI (34)

Thus, from Equation (32),

2E L
e= 1+ Tof . (35)

M M2 G2
e
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The parameter p can then be found from:

2
L
p= —— (36)
M° M G
s e
Since,
ro= P ., (37)
1+ e cos (9i - 90)
then 8 = ei - cos -l [;1—(—% - Nl (38)

D. ORBITAL DETERMINATION BY RANGE-RATE MEASUREMENT ONLY.

This method employs four stations with Doppler radar equipment which
measures only the range-rate of the spaceship. Each station observes an incoming
frequency fi(r), where i=1, 2, 3, 4 is an index specifying the station. Suppose
fo is the constant frequency emitted by the spaceship, and the electromagnetic
wave propagates with the velocity of light c. Since the velocity of the spaceship
is, in general, much less than the velocity of light, the radial velocity Vi (t) of

the spaceship with respect to the ith station is:

£
V. ()= d]-rfﬂl (m

Equation (1) is based upon straight ray approach and the atmospheric
refraction has been neglected. When the spaceship is approaching the ith station,
the incoming frequency fi will be higher than the constant frequency fo, then the
radial velocity Vri(t) is defined as positive. Therefore, if Ri(t) is the instantaneous
distance from the station to the satellite, we have,
y d Ri(t)

¥l

(2)
dt
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Thus, ¢

R =R - [ V@) dt, ©
I I ¢ ri

o

where Rio represents the initial value of Ri(t) at t= fo. And the four initial

distances Ri are in general unknown,

0
Substituting (1) into (3), we get

t f
(o)
R.(t) =R, —fj cl1- w] dt

[e)
Poa
=Rio"c(f'fo)+ CFO“‘; w. (4)
o]

Let x(t), y(t), z(t) be the instantaneous coordinates of the spaceship with respect
to a given Cartesian coordinate system of reference and Xer Yir Z; be the coordinates
of the ith station with respect to the same system of coordinates. Consider three of

the four stations. We have, for i=1, 2, 3:

(1) = x) 2+ () =y )%+ (@) - 2)? = Ro) ©)
(xt) = x)2 + (/1) = y,) + (21) = 2) = Ro() ©
(x(t) = xg) + (7(8) = yg)” + (xlt) - 23)° = R3(). %

From Equations (5), (6) and (7), x(t), y(t) and z(t) can be solved in
terms of R](r), R2(t) and R3(t). Since we know that

t
dt
Ri(f)':RiO = C(f -f0)+ c fO ':J‘ _F;ZFTI
o




then we have,
() = x4 1) =y oo (20) - 2)2 =Ry - clt - 1)

t
+ CFOtI

o

(x-x2)2+(y-y2)2+(z-22)2=R mclt -t )+ cf j —1-5-
(x-x3)2+(y-y3)2+(z-z3)2— - ot -t)+ cf j’-jj-

From Equations (8), (9) and (10), we know that x, y and z can be

solved in terms of fo’ t, R R,n and R

107 R0 30° 1+

x(t) =xtt, f_, R

10’ 20' 30)

z() =z, £ Rigr Rygr Ryg) -

Now, let Xgr Yqr 24 be the coordinates of the fourth station in the chosen

reference system. We have,

VM=-de=<ﬂl-;%4.
dt 4

Likewise, R4(f) can be expressed as:

R4(f)= \/(:' x4)2 +(y - Y4)2 +(z - 24)2
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(8)

(10)

(1)

(12)

(13)

(14)

(15)
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Substituting Equations (11), (12) and (13) into Equation (15), we know that

4(t) can be written as a function of f t, R R20 and R30. i.e.,

101
Ry() = Ry(F_, 1, Ry, Roo, Ryo). (16)

Now substitute Equation (15) into Equation (14). We get,

_dR4(f) ='%[2(x'x4) :—:+2(Y-y4)gtz+z(z —z4)%z?]
dt [ 'x4)2+ (y 'Y4)2+ (z '24)2] /2
=ﬁ4]?5[(x-x4)3_:+ (Y-Y4)%Z',+(Z-z4)%—?]. (17)
Thus,
-1 [ dx )dy ) | el - fo | 9
R4h’$ (X-x4)ar+(Y'Y4—dT+(z 4_._ = W (

Note the right hand side of Equation (18) is a function of t and fo
while the left hand side of Equation (18) is a function of t, f Riasr R

107 720/
and R3O' At t= f tor tg and tys Equation (18) can be spllf into four

equations, ncmely.

dx

‘7T [Ixtt £ Rygr Rypr Rag)=xy] TGH'_*‘F[Y“V for Rio7 Raor R3o)
i
dy
-y ]
4 dt c:i‘f:ti
dz fo
+[z(f fr Rigr Rogr Rag) =24 ! o ctt:t] = c[]—W]' (19)




where i=1,2, 3, 4.

Solve Equation (19), and we find the four unknowns (i.e., fo , R]O'

R20, and R3O)' Once we know the value of fo, R]O’ R20, and R30, the

position of the spaceship can be determined from Equations (11), (12) and (13).
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FIGURE 1. Coordinate systems at the tracking station.
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Xs

/
/

FIGURE 2. Transformation from the rectangular station coordinate

system into the geocentric coordinate system,




wt

FIGURE 3. Transformation from geocentric system to inertial geocentric

system,
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FIGURE 4. Orbital plane coordinate system and the geocentric

inertial coordinate system.
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FIGURE 5. Polar coordinates in the orbital plane.
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PART il

DATA SMOOTHING IN THE DETERMINATION

OF THE ORBITAL PARAMETERS.,

A. INTRODUCTION

A-1 Statement of the Problem.

The orbit of a satellite is determined from the data obtained with a radio
tracking system. Various techniques are available which use range, velocity
and angle measurements. In this study, the position of the satellite is determined
by three simultaneous range measurements, one from each of a group of three
earth stations called station-group. The distance between stations is small compared
to the distance of the stations to the satellite; most probably, the stations will form
an equilateral triangle but this is not necessary.

Only free flight orbits (no powered flight maneuvers) have been considered.
Assuming a two-body problem, the orbit is an ellipse, an hyperbola or a parabola.
Only the case of elliptic orbits with small excentricity is investigated. One focus
of the ellipse is the center of the earth and the orbital parameters can be computed
knowing three positions of the satellite. When the excentricity tends to zero, the
elliptic orbit tends to a circular orbit with center 0, the center of the earth; the
radius can be computed knowing one position of the satellite. The errors in the
location of the stations and in the range measurements cause an uncertainty on
the satellite position which produces errors in the computation of the orbit and
of the orbital parameters. Three position measurements are necessary to determine
an elliptic orbit and only one to determine a circular orbit, the additional position
measurements can be used to reduce the uncertainty of the orbital parameters. This

technique which uses sampling theory is known as data smoothing.




Fig. A-1

G TRUE ORBIT

All the errors in the determination of the satellite position
—
are lumped info cn error vector SM. S true satellite

position, M measured satellite position.
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A-2  The Method of Approach.

The position of the stations is known. The position of the satellite is
determined by a vector with origin at the center of gravity of the station group
and with tip on the satellite. The location of the stations is assumed to be known
exactly, all the various errors being lumped together as an error on the satellite
position.
Let S and M, be respectively the true and the measured position of
the satellite and denote by G the center of the station group. The measured
vector G—I'\/\ is the vector sum of the true vector 55 ana of an error vector
SM, as shown in Fig. A-1. Denote by O the center of the earth_.. It is gdvon-—
tageous to express the position of S in polc:coordina’res: angle OG, OS=a
and modulusﬁ |OS | = r. The error vector SM is defined by its modulus ¢ and
the angle OS, S_'M—"— © . The vector 65 and O_f:/\ will be denoted respectively
as frue position vector and measured position vector, The time when the satellite is
at the closest approach to the station is taken for origin of time. The position of the satellite
is measured every At sec.; the sampling time is denoted by t_

K t-k+ 17"

ro fk -1 fk where t = kAt and t_k= -kAt, At time fk the true and

k
the measured satellite position are denoted by Sk and Mk , respectively; the
phase and the modulus of the vector error are denoted by P and p K respectively.

It is assumed that P is uniformly distributed and that is Rcuyleigﬁr distributed

p
with a variance %) increasing with | k |. The definifiol; of the various parameters
is illustrated by Fig. A-2,

In Section B, a formula for the estimation of the radius R in terms of m . the modulus
of the kth measured position vector, is derived. A smoothing technique is developed
where the optimum number of samples and the optimum accuracy are determined.

The case of an elliptic orbit is considered in Section C. The three orbital

A

parameters are defined implicitly as a function of m g M and m

k+ 1°

smoothing technique is proposed.

Section D contains the conclusions and a ciscussion of the assumptions.

This standard assumption corresponds to measured satellite coordinates,
independent and normally distributed about the true satellite coordinates.




Fig. A-2

Polar coordinate representation of the true and

measured satellite position at time t

kl
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B. DATA SMOOTHING FOR CIRCULAR ORBIT

B-1 The Measured Radius.

Assuming that the orbit is circular, the center of the orbit is the center
of the earth and the only unknown orbital parameter is the radius R. Consider

again Fig. A-2. At time t=1t m, = |OS, | is the measured value of the
k k

k ’
radius. In the triangle OMk Sk ;, m can be evaluated in terms of N = R

and the modulus and phase of the vector error, i.e. o and CPk .

2

2 2 .
mk—rk+pk-2rkpk cos \Pk
(8-1)
2 2
m = \/rk-l—pk - Zrk pkcosCPk

The vector error is unknown by definition, but its statistics is assumed to be
known. The random phase CPk is uniformly distributed and the modulus o) s

Rayleigh distributed. The vector error SkMk is represented by a joint probability
density

20 2/ 2
Py= A K e %/ ok B-2)
p(pkl k)" 777 -;T € ('
k

where Oi is the mean square modulus, i. e. oi= pi. T
It is assumed that 02 is a known function of a. The rotation of the

earth is neglected as a first approximation since the satellite rotates much

faster than the earth.

A bar above a rundom variable mezns average.
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Fig. 3-2  Effect of eurth rotation for circulor orbit. 3oth, the
satellite S ond the station group C rotate about

the center of the earth, The subscript k refers to time fe
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B-2 Estimation of the Radius.
The radius R can be estimated from one measured value m, . An
unbiased estimator 5 1 obtained by comparing W( to R.
By definition
- 2 2
® 217 2pk k /o
1 k
= H ™ 7 ° depy ey (B-3)

k
|
and —nTL is the average of m, with respect to both o K and P

After integration with respect to Py (1],

Ry 2pk ) p'/ Y
2R + o) E ( ) (B-4)
R+p,) o

k

mk=

=
oO~— 8

where E( ) is the complete elliptic integral of the second kind.

Since O is much smaller than R, it is convenient to develop E( )

in series and keep only the first three terms. Then

22
2 o) B /ey g -tk 3R
TR Ry < Reg F Reo)?
k k k
2 B-5
% (B-5)
~ R+ —
4R
Integrating with respect to pk yields,
o pk Zpk -pk/2
| Re g 7 °
“k
2 (B'é)
o
~ R+




The mean of m_ is not equal to R, i.e. m is not an unbiased

k
estimafor. Solving (B-6) yields

m Ei-ck _ Gi
R = < (1= =)
2 A4Eﬂ;

From (B-7), it follows that

=m
k k 4mk

is an unbiased estimator for R, i. e. i = R. The variance of m is easily
obtained

2 =2

var (mk)= m o o-m

Using (B-1) and (B-2) and integrating,

2 %27
mk=gg mkp(pk'q)k)dq)k dpk
=R2+ Oi

Combining (B-9), (B-10) and (B-6) yields

?
2 2 % .2
vcr(mk)=R +Ok-(R+]§-)
2
2k
2
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(B-7)

(B-8)

(B-9)

(-10)

(B-11)
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The variance of s, is

k
T, 2
var (sk) =5 7 9 (B-12)
2
— %)
s, =m, - ( ) (B-13)
k k 4
M
2
= Py 02
— =2 2 k
1 TP e
(=] | = — do, do, (B-14)
k 00 o 2 2
k R +pk-Rpk cos CPk

_p2 2
® Rp 2p k/O
2 k k
= | K(/—r) = e do, (B-15)
0 mR+p) R+0p) o

k

where K( ) is the complete elliptic integral of the first kind. Since R> P 7

Rop P

2 k 1 k
— K( ___2_)% = (1+ —) (B-16)

TR +0.) R+p,) : R

Combining (B-13) and (B-14) and integrating yields

(m_)%l(“r oV
k 2R

) (B-17)

Combining (B-6), (B-17) and (B-13) and neglecting the smaller terms yields,

as expected,




?k= R (B']S)
From (B-8)
02 04
2 2 k k
Sk_mk-2_+_2 (B']9)
16 m
k
From (B-1)
L ! (B-20)
7 72 B
m (R erk)—ZRpkcosCPk

m, R™ =~ P
2
1 Pk
20 o

Integrating (B-21) with respect to o yields

2
- o
1 1 k 1
my R R R
From (B-19)
5 = &
2 2 k k
e - = ) (8-23)
m
k
Combining, (B-10), (B-22) and (B~23)
-_ 02 04
2 2. 2 k k _
SR Ao st — (B-24)

16R



Combining (B~24), (B-18) and (B-12) yields

02 04
k k
var (s, )= — +
T2 16k
O2
~ K
2

MIFDMI

2
K
That is, the unbiased estimator S has the same variance - =

as the measured radius m .

B-3 Data Smoothing for Radius Estimation.

In a practical situation, many measured m and, therefore, many
samples 5 of the unbiased estimator are available. |t is shown next that

the best estimate of R is the sample mean s° of size 2n+ 1.

n n
= (g L 6 G L 6 m )
i= -n k=-n

Since the successive samples are independent and unbiased, all the

cross terms are zero,

n
6 -7 T 6 -R7,
(2n +1)
k=-=n
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(B-25)

(B-26)

(B-27)

(B-28)

(B-29)
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n 2
] N %
var (s') = — _ . (B-30)
(2n+ 1) 2
k=-n
If all the measurements had the same accuracy, Oi = constant , the
variance of s° would decrease continuously when n increases. In the
actual situation, Gi increases rapidly with the distance to the station, i. e.
with k. The variance of s° decreases first and then increases when n
increases.
The optimum number of samples N is the choice of n which makes
the variance of s° minimum.
In other words N is the maximum value of n which satisfies the
inequality
var (s (2N + 3)) - var (s (2N +])) <0, (B-31)

. . 2 .
and N can be obtained if the variance Oy of each measurement m, s
known as a function of the satellite position a, . This technique is illustrated

best by an example.

B-4  Example of Data Smoothing.

Assume that the variance of the modulus of the error vector is a parabolic
function of the true position angle oy and that the satellite position is measured
at intervals of one degree.

For example,

oi = 2@ +b KA. (8-32)
From (B-30), it follows n
2
. 2% 2
var (" 504 1) = — ( NN v (B-33)

2 2n+1 (2n+l?2 K

1l
—_
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From standard tables [2],

n
Z k2 _ nn+1)@2n+1) ) (B-34)
k=1 6
so that (B-33) reduces to
var (s’ )= o’ @+ 20y (B-35)
@)™ 9n 4+ 1) 3
Similarly,
2
. _C b(n+1) (n+2) _
var (s (2n +3)) = 23 @+ S ). (B-36)

The optimum value of n is determined by (B-31), i.e.

o2 @ PO () o2 NLIGRA)

2(2n +3) 3 2(2n + 1) 3

)< 0 (8-37)

which reduces to

2 2
o) [_ + b(n + ]) ] 0 . (B-38)
(2n + 3) (2n +1) 3 -
The solution is,
n i —% - 1. (B-39)
1.

The optimum value of N is obtained by truncation,

N = Trunc ( / -flr -1 (B-40)

T The truncation of a positive number x is the largest integer less or equal to x.
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and the optimum number of samples is 2N + 1,

Assume a=1 and b= .01 to continue the example. From (B-40),

N =16 (B-41)
The optimum number of samples is 33, the variance of the sample
mean is
var (s*,.) = .0346 o2 B-42
33 . . ( - )

If only the best sample (k = Q) is used, the variance is,

var (sO) =.5 02. (B-43)

Therefore, the variance of the estimator is about fourteen times smaller after data
smoothing. To illustrate the behavior of the variance of the sample mean as a

function of the number of samples, the relation (B-36) is plotted in Fig. B-1 for
a=1 and b=0.01.

B-5 Earth Rotation and Data Smoothing.

The effect of earth rotation is investigated assuming that the trajectories
of the satellite and of the station group are circular with center O and coplanar.
When the rotation of the earth is neglected G is fixed and the points O, G and
S0 are continuously aligned. The rotation of the earth produces an angular displacement,
B= OSO, OG of OG with respect to 650 as shown in Fig. B-2. Denote the angle,
66, o’s by CL*T. Let QG and QS be respectively the constant angular velocity of
the earth and of the satellite in circular orbit. The position of SO corresponds to the
origin of time. Assume again that the positions of the satellite and of the earth are
sampled at regular time intervals, i.e. f = kAot where k is an integer. At time fr

the angular position of the satellite with respect to the fixed vector OSO is

f a and o* denote the angle oG, O'S without and with earth rotation.
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OS0 , OSk= OS0 ' OGk+OG, OSk
=Bt
= QS by (B-44)
Since, Bk = QG tk , it follows
%= 959
= - B-45
k(Q Qg )ar (B-45)
which can be written in the form,
of = k¥Qe Ar, (B-46)
Q.
where k*= k(1 == ).
?SS

It follows that the effect of the rotation of the earth in the determination
of the radius of the orbit can be accounted for by substitution of k* for k in
Par. B-3. To illustrate the procedure, the example of Par. B-3 is continued by

taking into account earth rotation.

Assume that satellite and earth rotates in the same direction, the satellite

“

being twenty times faster, i. e. o 0.05 and k*=.95k.
S
Let (2n* + 1) be the number of samples when taking the earth rotation

into account. Then (B-33) becomes,

T Assuming that earth and satellite rotates in the same direction.
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2 n*
y=2 (o 2P ZZ(.%K)Z) (B-47)

2 2n*+1 (2n*+ 1) k=1

var (5" onx + 1)

Using (B-34), (B-47) reduces to,

X (95 bt +1)

var & o 4 1) "5z AT © 3 ) (B-48)

Comparing (B-35) and (B-48), it is clear that the effect of earth
rotation is to replace b by

Q
b* = b(l -—2).

2

Therefore, the optimum value of n*, N* is obtained by substitution of b

by b* in (B-40).
1 a
N* = Trunc (— / — = 1) (B-49)
.95 b

when a=1 and b= .01, N*=17,

The optimum number of samples becomes 35, the variance of the estimator
becomes ,0274 02.

In conclusion, when the relative velocity earth satellite decreases (earth
rotates in same direction as satellite), the optimum number of samples to evaluate
the radius increases and the variance of the sample mean decreases. |f the earth
and the satellite had the same angular speed, the satellite wiil ook stationary,
the variance of the sample mean will then decrease linearly with the number of

samples. The conclusions are just opposite if the earth and satellite rotate in

opposite directions.
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C. DATA SMOOTHING FOR ELLIPTICAL ORBIT

C-1 Determination of the Orbital Parameters.

The orbit is determined in polar coordinates with respect to the vector
650 . The shape of the orbit depends on two numbers: p the semi-latus rectum
or parameter, and e, the excentricity. The position of the foci line with respect
to O_'S0 is defined by the angle 8. The three orbital parameters p, e and 8
| can be determined by three positions of the satellite.
| Assuming that three exact positions of the satellite, S] , 52 and S3
are known, the orbital parameters could be determined exactly. Let (r] , &]),
(r2 , az) and (r3 ’ (13) be the polar coordinates of S], S2, 53. Then p, e

and 6 are the solutions of a set of equations:

rp= P (C-1)
1+e cos(6- 0L2)

- P
1+e cos(d- (13)

'3
Expanding cos(d - @) and making the change of variables x = e cos 6 and
y=e sin 8, yields a set of linear equations:
lp- (r] cos 0.]) X = (r] sin CL.I)y =

lp- (r2 cos 0L2) X = (r2 sin 0L2) y =1, (C-2)

lp- (r3 cos OL3) X - (r3 sin oc3) y =713
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The solution is easily obtained using matrix algebra:

rTpT3 (sin(on3 - uz) +sin(a] - a3) +sin(on2 - q]) )
o= ()
rafy sin(on3 - onz) T sin(oc‘ -0L3) trgfy sin(an2 - CL])

r3r2(sin Q= sin a3) g (sin ag- sin a]) Ty (sin a, - sin OL2)

x:

(C-4)
rafy sin(on3 - OL2) triry sin(a] - (13) tryh sin(on2 - G..I)

R r2(cos Gq = cOs az) +r r3(cos a, - cos (13) Tyt (cos &, = cos G,])

y = (C"S)
T3Ty sin(a3 - a2) T T sin(a] - OL3) Ty sin(cx,2 - OL])

Then e=vV x +y (C-6)
and o= fcn-] (y/x) . (C-7)
C-2 Estimation of p, e and 6.

Refer again to Fig. A-2. In a practical situation, the exact polar coordinates
(r], Ct]), (r2, OL2) and (r3, CL3) are not available. It is necessary to estimate p, e and
8, using the measured polar coordinates (m], B]), (m2, B 2) and (m3, \53).

Clearly, O = B Kt Yo In the triangle O Mk Sk

sin Y| sin P

i3 (c-8)
’k k
7 P sing
therefore, . = Bk+ sin ] (—E—-——li) (C-9)

M



2 2
where m, = \/rk to - 2rk P) o8 CPk (C-10)

As a first approximation, the estimate Ep’ Ex and Ey or p, xand y

are obtained by replacing @ by ﬁsk and " by m in (C-3), (C-4) and (C-5):

¢ __ MiMama bin (Bg - Pl tsin(p - By +sin(ey - By)) (c-11)
P mym, sin (53 - 52) tm, mg sin(B] - 63)+m2m] sin(B2 -B])

m3rh2(sin 82 - sin 83) +m] m3(sin 83 - sin B]) +m2m] (sin B] - sin 52) (€-12)

E =
Y mgmy sin(B - By) +my mgsin(B; ~Bg) + my m, sin(g, ~5))

. - m3m2(cos 83 - cos 82) +m, m3(cosB] - cos 83) + mzml(cos B, = cos B])
Y mam,, sin(B3 - 52)+ m, my sin(B] - {33)+m2 m, sin(E&2 - B])

(C-13)

To find the mean and the variance of Ep' Ex and EY requires six
integrations too difficult to be practical. The solution is to replace Ep ; Ex
and Ey by approximate power series which can be integrated. For this purpose,

it is convenient to transform the random variables from Polar to Cartesian coordinates.

Let Uy = Py COS @y and Vi = 0 sin ¢, . The po|a|'2density distribution

Pk
-—
120 9
p](pkl cPk)=7T_T ;2"’ € (C-14)
k 2
Uk + Vk
becomes -( — )
1 ‘K
pz(uk' Vk) = e . (C-15)

TfO'k
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The measured samples my and Bl be come:

m = Ak - Uk)2 +v2

. (C-16)

-] Yk
(

2 2
/(’k'”k) Vi

Bk= 0y - sin ). (C-17)

The estimated values of p, x and y are functions of the six independent

variables Uyr Vir Ugr Vor Ugs Vg which have zero mean. As a first approximation,

: o
Ep=(Ep)0 i .L] (3 0. o it
1= |

oE
(_.Fl

3 vi )0 vi ’ (C'IB)

t>Tw

1

where the subscript 0 means evaluated at Up S Up ZUg=Vy =Vy=Va= 0. Clearly,
(Ep)O =p, the true value of p.

With the approximation (C- 18), the mean and the variance of the sampled
value Ep are easily obtained:

Ep=p, (C-19)
g aEpz of ,\_Ci aEpzo?
Ver €)=, (3 ui)O 7T 6 . Yo 3 (C-20)

i=1 =1
The cross terms disappear because all the u, and v, are independent. If
R . 2
the excentricity e is very small, the variance o of the modulus of the vector

error, which corresponds to a position a. of the satellite, can be read on the curve
made for circular orbit.



C-3  Data Smoothing for Elliptic Orbit,

It was shown in C-2 that an estimate of the orbital parameters can be
computed after measuring three positions of the satellite, say i=1, 2 and 3.
If in a practical situation n measured values of m and By are available,
g— estimates of p, e and 6 can be computed: (Ep)l’ (Ep)2

The sample mean of size 2N + 1, (Ep)2N+1' is a better estimate of p
than any single estimate <Ep)1 or (Ep)2 ... , for a proper choice of N. (The
same is true for e and 9.)

With the approximation (C-18),

N
. _ 1 <
(Ep)2N +1 7 2NH1 L (Ep)k :
k=-N
Assuming that three consecutive measurements are combined to form an estimate

of p, the kth sample is

3 3
dE o0E
= k < k
E) =p+) (L ) =), v
(P)k P iZ; ](aui+k)0 Ytk i:](a Vi+k)o i+ k
Combination of (C-21) and (C-22)yields,
N 3 N 3
9 E v 9E
. _ 1 P O T pk < pk
Eon+t PR L2 LoGu otk L Lo Vi
p 1+ k . . |+k
==N i=1 k=-N I:]

The mean of the sample mean is p. The variance of the sample mean of

size 2N+ 1 is

79

(C-21)

(C-22)

(C-23)
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Var (p)2N+]
N 3 9E, v N 3 o 2
1 AW < ky itk | © < k
pom S S A A et A R A TUD S -D)
NADT ko IN =1 e k= -N i=1 itk
Since all the random variables are independent with zero mean, all the
cross products disappear:
N 3 5FE _
. a [ . N pk 2 73 _
var €lanie s ‘(2N+])21 L L (a Jo Vitk (€-25)
k=-Ni=1 itk
N 3 3FE
N < pk 2 2
" L L (8 ) Vit k
k=-N i=1 %Vi+k
02
. 2 _ 2 Tk .
Since, Uitk = Viik = 5 0t follows
| N 3 _8E dE o
. _ < < 7 pky2 T pk (2 7 itk _
Var (Ep)2N+1 TINT1 L /) L(a Jo 5 % | ) (C-26)
k=-N i=1 “Yi+k Vit k

oE K aE k
(—2L )0 and P )0 can be obtained by taking the partial derivatives of

8ui+k avi+k
(C-11) with respect to u and v and then substituting 0 for u and v. If the

curve modulus variance versus satellite location is available, everything is known

in (C-26) except N; that is, Var (Ep)éN+ : is a function of N. The optimum
value N* isthe value of N which minimizes Var (Ep)éN+ T The best estimate

of the parameter p of the elliptical orbit is then (Ep)éN*+1 . Similar results could

be obtained for e and p.
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D. CONCLUSION,

The purpose of this report was to develop a data smoothing technique for
an optimum determination of the orbital parameters of a free flight orbit. A position
vector for the satellite is determined from three range measurements, one from each
of the three stations. The measured position differs from the true position by an error
vector which combines all the various errors. The data smoothing technique developed
here differs from conventional sampling theory because the variance of a sample
(measured position-vector) is not a constant but a function of the relative position of
the satellite and of the station.

If the orbit is circular, the only orbital parameter is the radius. A formula to
estimate the radius with one vector position measurement is derived. A better estimate
is obtained by using a sample mean of size N* as an estimate. The optimum number
of samples N*, i, e. the optimum orbital arc length to measure, is determined. An
example is completely solved showing that the accuracy increases considerably. The
effect of earth rotation is easily accounted for.

If the orbit is elliptical, the three orbital parameters p, e and & can be
determined by three position vector measurements. Formulas for the estimates Ep,

Ee and Ee of p, e and 8 in terms of the modulus and angles of the measured
position vectors are derived. Since the formulas are very complex, the mean and the
variance of the estimates cannot be obtained in closed form. The method proposed is

to expand each estimate in powers of the components v, and vi(i =1, 2, 3) of the
three corresponding error vectors. A technique of data smoothing is proposed to increase
the accuracy. This technique will determine the optimum number of samples for best
accuracy and the variance to expect.

The problem of data smoothing of the orbital parameters was completely
solved for a circular orbit and a method was developed for an elliptical orbit. Much
work remains to be done for the elliptical orbit: more terms in the series development,
formulas for all the partial derivatives, and application to specific examples. Only

the information contained in the range measurements was used. Obviously, for free
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flight orbit and equal sampling intervals, the same area is covered between two
samples; this information should be used to improve the accuracy. Only free
flight orbits have been considered while an increase in the accuracy of the orbit
determination during a satellite transit is very desirable.

The data smoothing technique developed in this report is quite powerful
and general. It can be used to determine constant parameters, which are
explicitly or implicitly functions of sampled values and of random variables.
The random variables may be stationary or time-varying. A minimum number of
samples is necessary; for example, three position samples (three measured position-
vectors) are necessary to determine the orbital parameters. 1f more samples are
available, the accuracy can be increased. It is quite probable that this data
smoothing technique could be modified for the determination of time-varying

parameters in presence of time varying random variables.
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LIST OF SYMBOLS IN PART Iil

G‘IBI‘Y

Pr®

G" ™S

Modulus of JG and (.:;M

Elliptic integral; Ep Ex Ey estimates of p, x, and vy
Excentricity

Center of the station group

Subscript denotes successive satellite positions
Measured and true satellite positions

Modulus of C;M and 55

Center of the Earth

Elliptical parameter; p( ) Probability density
Radius of circular orbit

Unbiased estimator for the radius

Error vector

Cartesian components of vector error

Define e and 8 (x=ecos & , y=-esind)

Angles JG, 55; SG, JM; SM, C_;S
Angular position of foci -line with respect to 650
Modulus and phase of vector error

Angular rotation of station group and satellite

A dot as a superscript means sample mean.

A bar as a superscript means average.
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